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Abstract
The fermionic f coefficient in the Lorentz-violating standard model extension
presents a puzzle. Thus far, no observable quantity that depends upon f has
ever been found. We show that this is because f is actually unnecessary. It
has absolutely no effects at leading order and can be completely absorbed into
other coefficients of the theory by a redefinition of the field.

PACS numbers: 11.30.Cp, 11.30.Er, 11.10.Ef

In recent years, there has been a growing interest in the possibility that there could exist small
Lorentz- and CPT-violating corrections to the standard model. A number of candidate theories
of quantum gravity predict possible violations of these fundamental symmetries, and if any
such violations were found, they would be important clues regarding the nature of Planck scale
physics. An effective field theory, the standard model extension (SME) has been developed to
describe all possible violations of Lorentz symmetry in quantum field theory [1, 2] and gravity
[3]. The full SME is quite complicated, and so we typically restrict our attention to a field
theory with only a finite number of Lorentz-violating parameters. The minimal SME contains
only operators that are superficially renormalizable, and both the one-loop renormalization [4]
and the stability [5] of this theory have been studied.

To date, experimental tests of Lorentz violation have included studies of matter–
antimatter asymmetries for trapped charged particles [6–9] and bound state systems
[10, 11], determinations of muon properties [12, 13], analyses of the behaviour of spin-
polarized matter [14, 15], frequency standard comparisons [16–18], measurements of neutral
meson oscillations [19–21], polarization measurements on the light from distant galaxies
[22–24] and others. The results of these tests can be used to place bounds on many of
the minimal SMEs Lorentz-violating coefficients. However, there are still many sectors of
the theory for which there are no useful bounds at all. Since the minimal SME is used to
parameterize the possible forms of Lorentz violation that might be seen in experiments, it is
important to understand the structure of the model itself. In particular, we should know how
many independent forms of Lorentz violation the theory can describe.
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In the course of analysing these many tests of Lorentz symmetry, one puzzling fact has
been observed. One set of Lorentz-violating coefficients in the Lagragian—the f terms in the
fermion sector—always seem to cancel out when we calculate observable quantities. (As an
immediate consequence, there are no known experimental bounds on any f .) In this paper, we
shall look more closely at these coefficients. We shall show that the lack of any leading-order
experimental dependences on f is actually a natural consequence of its structure. In fact, f

can be completely eliminated from any theory by redefining the fields. f is reabsorbed into a
different Lorentz-violating parameter, and the lowest-order f -dependent effects are of second
order in the Lorentz violation. This means that f is entirely unnecessary to our description of
the theory, and we may dispense with it entirely (unless using it happens to be convenient in
a particular situation). These results resolve a significant puzzle, and they result in a valuable
reduction in the complexity of the minimal SME.

We must begin by introducing the theory. For a model with a single species of fermion,
the most general superficially renormalizable SME Lagrange density is

L = ψ̄(i�µ∂µ − M)ψ, (1)

where

�µ = γ µ + cνµγν − dνµγνγ5 + eµ + if µγ5 + 1
2gλνµσλν. (2)

and

M = m+ �a−�bγ5 + 1
2Hµνσµν + im5γ5. (3)

Some of the coefficients in L are more important than others. For example, m5 is not Lorentz
violating, and it may be absorbed into the other coefficients by means of a particular field
redefinition,

ψ ′ = exp
(
− i

2
γ5 tan−1(m5/m)

)
ψ, (4)

that was already known before the introduction of the SME. This and other field redefinitions
are discussed in detail in [25], although only up to leading order. In this paper, we shall be
looking at effects of field redefinitions beyond leading order as well.

An a term can also be completely eliminated from the single-fermion theory, since it is
essentially nothing more than a constant classical vector potential term. Removing a simply
redefines the origin in momentum space—p → p − a. However, if there are multiple
species and flavour-changing interactions, differences in their a terms can be observable, and
gravitational effects could also make a an observable quantity.

Slightly different is the antisymmetric part of c, c[νµ] = cνµ − cµν . At leading order, the
c[νµ] terms are equivalent to a redefinition of the Dirac matrices; such a rotation in spinor space
can have no physical effects. So this part of c can be eliminated with another field redefinition,
but only if the O(c2) terms are neglected. That the antisymmetric terms do contribute at
higher order is evident from the fermions’ energy–momentum relation, which is given below
as equation (6).

There are also other reasons to believe that some coefficients may be more interesting than
others. The e, f and g kinetic couplings appear superficially inconsistent with the coupling of
the fermion field to standard model gauge fields, because they mix left- and right-chiral fields.
Such terms could only arise at the electroweak breaking scale, as vacuum expectation values of
nonrenormalizable operators, and so they might then be expected to be less important than the
c and d terms. (However, as we shall see, there is a significant weakness in this argument. We
are using the conventional Lorentz-invariant definition of the chirality operator, which might
not be appropriate when the SU(2)L gauge group is coupled to Lorentz-violating matter.)
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The coefficient f is similar to both a and the antisymmetric part of c Like a, f is
completely unnecessary for describing the physics. However, unlike a, f has definite physical
effects, although only beyond leading order. What makes f superfluous in the formalism is
not that this term is unphysical, but that the effects it generates are exactly the same as those
generated by another Lorentz-violating term. The more general c subsumes all the physics of
an f coefficient, and f can be eliminated by absorbing it into c. At second order in f , the
effects of f are indistinguishable from those of a c term:

cνµ = − 1
2f νf µ. (5)

This situation is also similar to what occurs with m5, as each of these terms can be entirely
absorbed into other coefficients in the theory.

So far, there are no experimental bounds on f . In fact, of all the Lorentz-violating
coefficients in M and �µ, f is the only one for which there are currently no suggestions even
for how it might be bounded. Typically, when searching for experimental tests of Lorentz
violation, we restrict our attention to effects that appear at first order in the coefficients.
Because Lorentz violation is small, any higher-order effects should be miniscule and would
only be important if they caused a qualitative change in the structure of a theory. (For example,
at second order in b, radiative corrections to QED could violate gauge invariance and possibly
lead to a photon mass [26, 27].) The f coefficient has no physical effects at leading order, and
that is precisely why its value is not constrained.

The fact that f has no leading-order effects on a theory is also related to the discrete
symmetries associated with this operator. The timelike coefficient f0 is separately odd under
C,P and T. These are the same symmetries as are possessed by the spacelike parts of a and
e. However, there are other discrete symmetries that distinguish these operators. The parity
operator is defined as inverting all the spatial coordinates, �x → −�x. However, P may be
broken down into the product of three separate reflections, P = R1R2R3, where Rj takes
xj → −xj and leaves the other two coordinates unchanged. While aj and ej (for fixed j )
are odd under Rj , they are even under the other two reflections. However, f0 is odd under all
Rj . No other minimal SME coefficient has this property. These curious symmetry properties
mean that there is no other object in the theory that can combine with f to give, for example,
something with the form of an O(f ) energy shift. For similar reasons, f does not mix with
any other coefficients under the action of the renormalization group [4]. (In fact, there are not
even any self-renormalization terms in the one-loop β-function for f ; βf vanishes identically
at leading order.)

Now to see the plausibility of our main claim, that any f term can be absorbed into c, let
us look at the energy–momentum relation separately in the presence of purely spacelike c and
f coefficients. The energies then are

E =
√

m2 + (pk − ckjpj )(pk − cklpl) (6)

and

E =
√

m2 + pjpj + (fkpk)2. (7)

These are actually very similar. Note that if there is only a c33 or an f3, then each of these
dispersion relations takes the form

E =
√

m2 + p2
1 + p2

2 + ξp2
3, (8)

where ξ is either (1 − c33)
2 or 1 + f 2

3 . This is sufficient to show that the noninteracting
theories with purely spacelike c and f are equivalent. However, we obviously want to show
more—that this equivalence can continue even in more complicated situations.
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For definiteness, we shall continue to work with a theory containing f3 only, demonstrating
how this may be transformed into a c33. This can then be generalized to cover other cases
without too much difficulty, although there are some additional subtleties that arise when a
timelike f is considered. The Lagrange density with f3 only reduces to

L = ψ̄(i�∂ − γ5f3∂3 − m)ψ. (9)

Everything is conventional, except for the matrix multiplying ∂3. The usual γ3∂3 has been
replaced by (γ3 − if3γ5)∂3.

The crucial observation is that γ3 − if3γ5 anticommutes with γ µ for µ �= 3, just as does
γ3 itself. The matrices γ3 and iγ5 are actually completely interchangeable in the ordinary Dirac
theory; they satisfy exactly the same anticommutation relations with the other Dirac matrices
and possess the same normalization. So any γ3 cos θ − iγ5 sin θ = γ3 eiγ3γ5θ can actually be
substituted for γ3 in the Lorentz-invariant Lagrangian without affecting the physics.

However, γ3 − if3γ5 does not quite have this form. Instead,

γ3 − if3γ5 =
√

1 + f 2
3 γ3 eiγ3γ5 tan−1 f3 . (10)

The rescaling factor
√

1 + f 2
3 gives rise to the nontrivial c33 atO(f 2). Defining new γ -matrices

by

γ ′
µ =

{
γµ, µ �= 3

γ3 eiγ3γ5 tan−1 f3 , µ = 3
(11)

transforms the Lagrange density into

L = ψ̄
[
iγ ′

µ∂µ − i
(√

1 + f 2
3 − 1

)
γ ′

3∂3 − m
]
ψ, (12)

that is, a Lagrange density for a theory with c33 = 1 −
√

1 + f 2
3 only.

The generalization to an arbitrary purely spacelike f is elementary:

γ ′
j = γj eifkγkγ5G(flfl ) = e− i

2 fkγkγ5G(flfl )γj e
i
2 fkγkγ5G(flfl ), (13)

where G(x) = 1√
x

tan−1 √
x. Note that G(x) is analytic around x = 0, so the arguments of

the exponents depend analytically on the components of f . It is a trivial matter to recast this
as a redefinition of the field, rather than the Dirac matrices. The exponentials commute with
γ0, so the field redefinition is simply

ψ ′ = e− i
2 fkγkγ5G(flfl )ψ (14)

ψ̄ ′ = ψ̄ e
i
2 fkγkγ5G(flfl ), (15)

and the Lagrangian for ψ ′ contains only a c term.
What is left is to deal with timelike f0 terms. The correct generalization of (14) is obvious:

ψ ′ = e
i
2 f µγµγ5G(−f 2)ψ, (16)

but there are some slight complications associated with the timelike case. For a purely timelike
f , with f0 only, the field redefinitions become

ψ ′ = e
i
2 γ0γ5 tanh−1 f0ψ (17)

ψ̄ ′ = ψ̄ e− i
2 γ0γ5 tanh−1 f0 . (18)

This converts f0 into a c00 =
√

1 − f 2
0 − 1 ≈ − 1

2f 2
0 , and here we see the subtlety. For

spacelike f , the transformation could be effected for an arbitrary negative f 2; however, when
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the Lorentz-violating coefficient is timelike, the field redefinition is only possible if f 2 < 1.
Larger values give rise to an imaginary c and so a Lagrangian that is not Hermitian. This is
not surprising, for if f 2 > 1, then the square of the matrix multiplying ∂0 in the Lagrangian
becomes negative, and so the time evolution can no longer be unitary. In that case, the entire
theory becomes inconsistent.

Since the field redefinition (16) works to eliminate f in both the purely spacelike and
purely timelike cases, it can be shown to hold for an arbitrary f , simply by performing the
relevant calculations in a boosted frame. The c that is generated by the transformation is

cνµ = f νf µ

f 2
(
√

1 − f 2 − 1). (19)

This may be further generalized to the case in which the initial Lagrangian has both c and f

terms. In that case, f may still be absorbed into a modification of c, and again there are no
O(f ) terms. However, the resulting expression is rather cumbersome, and it is uninteresting
practically. What is important is that the leading contribution that f µ makes to cνµ is unchanged
and remains equal to − 1

2f νf µ. Infinitesimally, the field redefinition (16) we have found is
identical with that presented in [25], where it was pointed out that this would eliminate f from
the free Lagrangian at leading order. Also as discussed in [25], this kind of transformation will
generally reshuffle any other Lorentz-violating coefficients that are present in the theory. For
example, if the theory prior to the elimination of f contains a b term, then the field redefinition
will generate a Hµν proportional to (f µbν − bµf ν). Likewise, if the theory initially contains
an a, the field redefinition will generate a m5 proportional to f µaµ; fortunately however, if
there exists a concordant frame, in which all the Lorentz-violating coefficients are small, it is
indeed possible to eliminate both f and m5 from the theory, using slightly more involved field
redefinitions.

The expression (19) is indeterminate for lightlike f , but the limiting value as f 2 → 0,
cνµ = − 1

2f νf µ, is correct at f 2 = 0. This can be verified, for example, using light cone
coordinates. Otherwise, (19) holds formally for all other f 2 < 1 (although, as with G(−f 2),
the power series expansion about f 2 = 0 fails for f 2 < −1). However, the larger f behaviour
of the theory is fairly uninteresting, for two reasons. First, for all observed particles, Lorentz
violation is small. Second, if a theory did contain a large f or large c, there would be causality
violations at a low energy scale, invalidating the description in terms of effective field theory
anyway [5].

We expect the coefficients describing any physical Lorentz violation to be of characteristic
size O(m/MP ), where m is a typical mass scale (i.e. in the ∼ 1–100 GeV range), and MP is
some very large scale, possibly the Planck scale. (The actual values of the coefficients will
vary by type and by particle species, so m/MP is only a very rough estimate of the size of the
Lorentz violation.) Typically, the description of the physics in terms of effective field theory
breaks down at energies comparable to MP . Additional higher-dimension operators must be
introduced at that scale if properties such as causality are to be preserved. However, the c term
is an exception to this. Because c and the Lorentz-invariant kinetic term possess the same
basic structure, there is mixing between them, and the c-modified theory fails at the lower
scale

√
mMP .

To see this, observe that the velocity in the presence of a purely spacelike c (chosen for
simplicity) is

vk = 1

E
(pk − ckjpj − cjkpj + cjkcjlpl). (20)

This can become superluminal when |�p|/E ≈ 1 − |c|, where |c| is a characteristic size for
the Lorentz-violating coefficients. For ultrarelativistic particles, for which 1 − |�v| � 1, the
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Lorentz factor is roughly γ ≈ 1/
√

2(1 − |�v|). This sets the scale of γ at which new physics
must enter: γmax ∼ 1/

√|c|. This corresponds to an energy scale Emax ∼ √
mMP .

So it seems that there may be a conflict between the version of the theory containing f ,
which breaks down at the higher scale MP , and the version with c, which could fail at a lower
scale. However, this problem is alleviated by the fact that the c term related to f is actually of
O(f 2), and so its natural size is O

(
m2

/
M2

P

)
. When f is converted into c, the energy at which

things break down is just the geometric mean between m and M2
P

/
m, and this is exactly MP .

So the scale of new physics is defined consistently in either framework.
The fact that f can be absorbed into c is also related to the leading-order triviality of c[νµ].

There are five independent mutually anticommuting 4 × 4 matrices, which may be arranged
in any way we like as γ µ and γ5 (with appropriate factors of i). The elimination of f fixes
the definition of γ5 and removes four of the ten degrees of freedom associated with changes
to the representations of the Dirac matrices. However, there are still six unphysical degrees of
freedom contained in c. The quantity gνµ +cνµ defines a bilinear form that connects pµ and γν

in the action. This bilinear form contains sixteen free parameters. However, the physics in a
theory with a c-type modification ultimately depends only on the energy–momentum relation,
which can be expressed as a bilinear form that connects p with itself. So only the symmetric
part of this second bilinear form is physical, and this amounts to only ten physical parameters.
The six parameters that are unphysical are exactly those that correspond to the SO(3, 1)

transformations that change the representation of γ µ. At leading order, these transformations
are represented precisely by c[νµ]; however, at higher orders, the algebraic characterization of
which parts of c are trivial becomes more complicated.

However, there is a fairly simple geometrical characterization of which parts of c are
actually physical. With c as the only form of Lorentz violation, the fermionic energy–
momentum relation takes the general form

CνµCν
ρpµpρ − m2 = 0, (21)

in terms of Cνµ = gνµ + cνµ. We shall work in a fixed frame and consider Cνµ = (Cν)µ as a
‘vector of vectors’. The inner index (ν) is coupled to the specific Dirac representation, while
the outer index (µ) may be seen simply as a parameter. It is then clear from (21) that only
quantities formed from inner products of the (Cν) vectors can have physical consequences. The
outer indices parameterize ten of these inner products; these are the ten physical parameters
and precisely the ten constants that define the bilinear form in (21). So in essence, only the
magnitudes and relative orientations of these vectors are physical. The overall orientation
of the cluster of vectors has no physical consequences, and SO(3, 1) rotations of the entire
cluster parameterize the six unphysical parameters.

To leading order, the four f µ coefficients are just the angles that parameterize a rotation in
spinor space. It is then natural that f is not renormalized at this order; any radiative corrections
to f would actually be quantum corrections to the Dirac matrix representation. Conversely,
the choice of Dirac matrices should not affect the renormalization of any of the theory’s other
parameters. So there are no O(f ) terms in any of the β-functions of Lorentz-violating QED
[4], for example. At second order in f , on the other hand, there are radiative corrections to c.

We have discussed a field redefinition that eliminates f from the Lagrangian. However,
another type of field redefinition is often used when the theory is considered in the Hamiltonian
framework (e.g. in [6, 7, 10]). If �0 is invertible, then the Dirac equation may be recast in the
Schrödinger-like form

i∂0ψ = (�0)−1(i�� · �∇ + m)ψ. (22)

However, the operator appearing on the right-hand side of (22) will not generally be Hermitian,
because there were nonstandard time derivative terms in the original Lagrangian. Using a field
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redefinition ψ = (γ 0�0)−1/2ψ ′, we may transform (22) into a new equation with a Hermitian
Hamiltonian, provided that γ 0�0 is positive definite [5, 28].

We shall now examine how these alternate field redefinitions behave in the presence of a
Lorentz-violating f only, so that �0 = γ 0 + if 0γ5. Invertibility of this matrix only requires
that f 2

0 �= 1. However, γ 0�0 will not be positive definite unless the stronger condition f 2
0 < 1

is met. This condition for the existence of the field redefinition is also stronger than the
condition f 2 < 1 that we encountered when looking at transformations of the Lagrangian—a
fact which should be unsurprising. In order to have a well-defined Hamiltonian formulation,
we must also be able to define the theory properly via its Lagrangian. However, since the
Hamiltonian method chooses a particular frame, it can be less advantageous. The cost of
choosing a reference frame in which |f 0| is greater than its minimum value

√
max(f 2, 0)

is that we must have f 2
0 < 1, rather than merely f 2 < 1, in order to define the theory. In

essence, by examining the theory in an inopportune frame, we are not making the best use
of the spacelike Lorentz-violating coefficients, which could be used to improve the theory’s
behaviour. Finally, we point out that f 2

0 < 1, as it is not a Lorentz-invariant condition,
could be violated, even for small f 2, in a highly boosted frame; this again illustrates that the
problems in defining the Hamiltonian are associated with choosing a poor choice of frame
when quantizing the theory.

While f is unnecessary for our description of the SME fermion sector, it is still possible
that it might prove convenient to use this parameter in specific situations. Effects that depend
on c in a particular fashion might be more simply expressed in terms of f . For example, some
of the most stringent bounds on c for the electron come from observations of synchrotron
radiation from the Crab nebula [29]. The spacelike coefficients so bounded take the form
cjkêj êk , where ê is a unit vector. So this constraint is on exactly that part of c that has the
form cjk = ±vjvk for some vector �v. This suggests that a formulation in terms of f might
be more succinct. Yet unfortunately, the bound in [29] is one-sided. A positive cjkêj êk leads
to a maximum electron velocity in the direction of ê, and that is a phenomenon with readily
measurable effects. However, a negative cjkêj êk does not lead to a maximum velocity, so no
cjk = − 1

2fjfk is excluded by this measurement—although, if a bound on a negative cjkêj êk

was available, it would immediately translate into a bound on |fj êj | in a formulation of the
theory involving f .

Nothing that we have discussed will change if the conserved vector current is coupled to a
gauge field. The derivative ∂µ is simply replaced by a covariant derivative Dµ. The inclusion
of the vector potential does not affect the field redefinition in any way. This may seem a trivial
observation, but there are situations where similar conclusions do not hold. A b term may
be eliminated from a massless noninteracting theory by a different kind of field redefinition,
ψ ′ = e−iγ5b

µxµψ . This corresponds to separate translations of momentum space for the left-
and right-handed fermions. While an Abelian vector coupling does not appear to mix the two
helicities, it is well known that chiral symmetry is broken at O(h̄) by the anomaly. So, even
though it looks like this field redefinition should eliminate b entirely from the physics, that
coefficient can still contribute to quantum corrections.

Nor do we expect a coupling to gravity to affect our ability to eliminate f . The
field redefinition that transforms away this coefficient is really just a change in the basis
used for the Dirac matrices. A gravitational interaction is not coupled in any way to
the specific Dirac matrices used to define a theory, so a rotation in spinor space is still
allowed, even in curved spacetime. This is in contrast to what happens with the a term,
which cannot generally be removed when there is a nontrivial spacetime background. The
reason is that the field redefinition ψ ′ = eiaµxµψ which removes a is x-dependent, and this
dependence interacts nontrivially with the covariant derivative. However, since f is removed
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by an x-independent field redefinition, there are no analogous problems associated with its
elimination.

Finally, we must address the issue of couplings to chiral gauge theories. As previously
noted, an f term—but not a c term—will mix left- and right-chiral fermion fields. This
appears to contradict the fact that a f may be converted into a c. However, the reasoning that
leads to the contradiction is actually based on an erroneous assumption. We have assumed
that the chiral projectors that appear in the Lagrangian should have the form 1±γ5

2 . However,
while the chiral current ψ̄�µγ5ψ is not conserved if M = 0 and f �= 0, there is another
conserved current, ψ̄�µγ ′

5ψ , with γ ′
5 = γ5 + O(f ). In fact, the necessary γ ′

5 is simply
−iγ ′

0γ
′
1γ

′
2γ

′
3 = e

i
2 f µγµγ5G(−f 2)γ5 e− i

2 f µγµγ5G(−f 2). The modified chiral current is conserved,
because γ ′

5 anticommutes with all �µ. So the theory can consistently be coupled to an SU(2)L

gauge group, provided the left-chiral projector used is actually 1−γ ′
5

2 . (In a similar vein, there
is a modified CPT operator under which the theory with f is even, like the theory with c.)

However, the existence of a modified chirality operator is a special property of the theory
containing f . Such an operator does not exist for general �µ. The question of whether such an
operator exists is closely tied to the relationship between e and f , which we shall now briefly
discuss. For m = m5 = 0, the energy–momentum relations have the same form for theories
with either e or f as the sole Lorentz-violating coefficients. (More generally, e gives the
same dispersion relation as theory with particular a, c and modified m coefficients.) Since the
energy–momentum relations and particle statistics completely define a noninteracting quantum
field theory, this means that the theories with either solely e or solely f (and no masses) describe
the same physics. However, in a theory with e0 as its only form of Lorentz violation, there
is no matrix γ5 + O(e) that anticommutes with �0 = γ 0 + e0. Yet actually there is a field
redefinition that will convert an e term into an f term in precisely the m = m5 = f = 0 case:

ψ ′ = e−i π
4 γ5ψ = 1√

2
(1 − iγ5)ψ. (23)

The terms with e and f have the same Dirac matrix structures as m and m5, respectively, so it
might seem obvious that in the massless theory, we can eliminate e in favour of f , just as m
could be eliminated in favour of m5. However, because the full term containing e involves a
derivative, the necessary field redefinition is nonlocal. The only exception to this is if f = 0
initially, so that the argument of the inverse tangent in the analogue of (4) is singular; the
resulting transformation is exactly (23). The necessary field redefinition does not vanish as
e → 0, and so the theory’s modified chirality operator does not have the form γ5 + O(e). If
the theory initially contains both nonzero e and f , then we could still attempt to construct a
new chirality operator via a field redefinition. The resulting operator would formally obey
the correct Clifford algebra anticommutation relations, but it would actually be nonlocal. In
the presence of interactions with additional spacetime-dependent fields, the nonlocal field
redefinitions will not work to eliminate e from the theory, because ∂µ and xµ do not commute.
Therefore, unless either m = m5 = f = 0 or m = m5 = e = 0, the explicit breaking of
chiral symmetry is real and unavoidable. Moreover, if m �= 0, then e and f are definitely not
equivalent. There can be physical effects of O(e) involving gravity, while f can always be
eliminated in favour of c that is O(f 2).

So we have seen that the f coupling is really quite special. While it has no effects at
linear order, it is not trivial in general. However, there are no unique phenomena associated
with this form of Lorentz violation. The f coefficient can be removed from the theory
by a spacetime-independent field redefinition, which replaces a pure f term with a c term,
provided that f 2 < 1. However, only small values of f 2 are really interesting, both because
they represent the only possible physical regime and because there are causality violations at
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an unacceptably low scale if f 2 is comparable to unity. For small f , the f µ coefficient is
equivalent to cνµ ≈ − 1

2f νf µ.
The field redefinition that eliminates f in favour of c is compatible with vector and chiral

gauge couplings, as well as a coupling to gravity. This implies that f is actually a completely
extraneous parameter in the SME. For each fermion species, it may be transformed away. So
further consideration of the f coefficients is unnecessary, and this represents an important
simplification to the structure of Lorentz-violating effective field theory.
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